Home
Class 12
MATHS
If (a costheta1,asintheta1),(acostheta2,...

If `(a costheta_1,asintheta_1),(acostheta_2,a sintheta_2)`, and `(acostheta_3a sintheta_3)` represent the vertces of an equilateral triangle inscribed in a circle. Then.

A

`costheta_1+costheta_2+costheta+3=0`

B

`sintheta_1+sintheta_2+sin theta_3=0`

C

`tantheta_1+tantheta_2+tantheta_3=0`

D

`cottheta_1+cottheta_2+cottheta_3=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B

Vertices `(a cos theta_1,a sintheta_1),(acostheta_2,a sintheta_2)`, and origin is the circumcenter (centroid) of circumcircle. Therefore, the coordinates of the centroid are
`((a(costheta_1+costheta_2+costheta_3))/(3),(a(sintheta_1,+sintheta_2+sintheta_3))/(3))`
But as the centroid is the origin (0,0) we have `cos theta_1+costheta_2+costheta_3=0`
and `sin theta_1+sintheta_2+sintheta_3=0`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Comprehension)|10 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise (Single)|59 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then

If DeltaABC having vertices A (acostheta_1, asintheta_1), B (acostheta_2, asintheta_2), and C (acostheta_3, asintheta_3) are equilateral triangle, then prove that cos theta_1 + costheta_2 + cos theta_3 = 0 and sintheta_1 + sintheta33

sintheta=-1/2 and costheta=-sqrt(3)/2

sqrt(3)costheta+sintheta=2

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

If (2sintheta-costheta)/(costheta+sintheta)=1 , then value of cottheta is :

If costheta-sintheta=sqrt(2)costheta , then find the value of costheta+sintheta .

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then costheta_(1)+costheta_(2)+costheta_(3)=?

If costheta+sintheta=sqrt(2)costheta ,then find the value of (costheta-sintheta)/(sintheta) .