Home
Class 8
MATHS
1-[(1+sqrt(3))/(2)-(1)/(sqrt(3)-1)] is...

`1-[(1+sqrt(3))/(2)-(1)/(sqrt(3)-1)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3)) , show that, (dy)/(dx)=(1)/(x^(3)+1)

The value of ((sqrt(sqrt(3)+1)+sqrt(sqrt(3)-1))^(2)(sqrt(3)-sqrt(2)))/((sqrt(sqrt(3)+1))^(2)-(sqrt(sqrt(3)-1))^(2)) is

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))