Home
Class 12
MATHS
lim(n->oo)(sqrt(n^4+1)-sqrt(n^4-1))...

`lim_(n->oo)(sqrt(n^4+1)-sqrt(n^4-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

underset(n to oo)lim (sqrt(n^(4)+1)-sqrt(n^(4)-1))=

lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))