Home
Class 12
MATHS
If f(x)={(sin(cosx)-cos x)/((pi-2x)^3), ...

If `f(x)={(sin(cosx)-cos x)/((pi-2x)^3), if x+-pi/2 and k,ifx=pi/2` is continuous at `x=pi/2,` then `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

f(x)={(sin(cos x)-cos x)/((pi-2x)^(2)),x!=(pi)/(2);k,x=(pi)/(2) is continuous at x=(pi)/(2), then k is equal to 0 (b) (1)/(2)(c)1(d)-1

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x), "if"\ \ x\ !=pi/2" 3,if"\ x=pi/2 is continuous at x=pi/2

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x),3 , "if" x !=pi/2"if" x=pi/2 is continuous at x=pi/2

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

Find the value of k, the function, f(x)={:{((1-sinx)/((pi-2x)^(2))", "x!=(pi)/(2)),(" k, "x=(pi)/(2)):} is continuous at x=(pi)/(2) .