Home
Class 12
MATHS
If A B C D is a rhombus whose diagonals ...

If `A B C D` is a rhombus whose diagonals cut at the origin `O ,` then proved that ` vec O A+ vec O B+ vec O C+ vec O D+ vec Odot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let ABCD be a plarallelogram whose diagonals intersect at P and let O be the origin.Then prove that vec OA+vec OB+vec OC+vec OD=4vec OP

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin. What is vec(OA) + vec(OB) + vec(OC ) + vec(OD) equal to

If vec a + vec b + vec c = o, prove that vec a xxvec b = vec b xxvec c = vec c xxvec a

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

A B C D isa parallelogram with A C a n d B D as diagonals. Then, vec A C- vec B D= 4 vec A B b. 3 vec A B c. 2 vec A B d. vec A B

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then O vecA + O vec B + O vec C + vec (OD) =

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then O vecA + O vec B + O vec C + vec (OD) =

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)