Home
Class 12
MATHS
Find the unit vector in the direction...

Find the unit vector in the direction of the vector ` vec a= hat i+ hat j+` 2` hat k` .

Text Solution

Verified by Experts

Unit vector `hata = (veca)/(|veca|)`
Given `veca = hat i+ hat j+2 hat k`
now , `|veca| = sqrt( 1^2 +1^2 +2^2)`
`= sqrt6`
...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the unit vector in the direction of the vector vec a=hat i+hat j+2hat k

Find a unit vector in the direction of the vector vec a=3hat i-2hat j+6hat k

Find unit vector in the direction of vector vec a=2hat i+3hat j+hat k

Find the unit vector in the direction of the vector : vec(b)=2hat(i)+hat(j)+2hat(k)

Find the unit vector in the direction of the vector : vec(a)=3hat(i)+2hat(j)+6hat(k)

Find the unit vector in the direction of the vector : vec(a)=2hat(i)-3hat(j)+hat(k) .

Find the unit vector in the direction of the vector : vec(a)=2hat(i)+3hat(j)+hat(k)

Find the unit vector in the direction of the vector : vec(a)=2hat(i)-3hat(j)+6hat(k)

Find the unit vector in the direction of the sum of the vectors,vec a=2hat i+2hat j-5hat kvec b=2hat i+hat j+3hat k

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .