Home
Class 11
MATHS
If in a triangle ABC, sinA/4=sinB/5=sinC...

If in a triangle `ABC, sinA/4=sinB/5=sinC/6`, the value of `cosA +cosB+cosC` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA+sinB+sinC=3 , then the value of cosA+cosB+cosC is equal to

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

In a triangle ABC, the value of sinA+sinB+sinC is

In triangle ABC , if AB=2,BC=4 and AC=5, then the value of (sinA-sinB)/(sinC) is equal to

In a triangle ABC, sinA+sinB+sinC=1+ sqrt2 and cosA+cosB+cosC= sqrt2 . The triangle is

In any triangle ABC If sinA : sinB: sinC=4:5:6,then prove that cos A :cosB: cosC=12:9:2.

In a triangle ABc, cosA+ cosB+cosC leP then P=

In a triangle ABC, the value of cosA/sinBsinC ​ + cosB/sinCsinA ​ + cosC/sinAsinB ​