Home
Class 12
MATHS
Probability if n heads in 2n tosses of a...

Probability if `n` heads in `2n` tosses of a fair coin can be given by `prod_(r=1)^n((2r-1)/(2r))` b. `prod_(r=1)^n((n+r)/(2r))` c. `sum_(r=0)^n((^n C_r)/(2^n))` d. `(sumr=0n(^n C_r)^2)/(sumr=0 2n(^(2n)C_r)^)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

If sum_(r=0)^(n)(2r)/(C(n,r))=sum_(r=0)^(n)(n^(3)-3n+3)/(C)(n,r)

If a_(n)=sum_(r=0)^(n)(1)/(*^(n)C_(r)), the value of sum_(r=0)^(n)(n-2r)/(n^(n)C_(r))

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))