Home
Class 12
MATHS
Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[...

Let `|[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|`=0 , then the number of values of `x` satisfying the equation is (a) 1 (b) 2 (c) 3 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Let |[tan^(-1)x,tan^(-1)2x,tan^(-1)3x],[tan^(-1)3x,tan^(-1)x,tan^(-1)2x],[tan^(-1)2x,tan^(-1)3x,tan^(-1)x]|=0 , then the number of values of x satisfying the equation is 1 (b) 2 (c) 3 (d) 4

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Solve for x : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve for x, tan^(-1)(x-1)+tan^(-1)x +tan^(-1)(x+1) =tan^(-1)3x .