Home
Class 12
MATHS
lim(x -> oo) (sqrt(x^2 - x - 1) - ax - b...

`lim_(x -> oo) (sqrt(x^2 - x - 1) - ax - b) = 0` where `a > 0`, then there exists at least one a and b for which point `(a, 2b)` lies on the line

Promotional Banner

Similar Questions

Explore conceptually related problems

If (lim)_(x->oo)(sqrt((x^4-x^2+1))-a x^2-b)=0 , then there exists at least one a\ a n d\ b for which point (a,-2b) lies on the line.

If lim_(x rarr oo)(sqrt(x^(4)-x^(2)+1)-ax^(2)-b)=0 then there existat least one a and b for which point (a,-4b) lies on the line

If lim_(x rarr-a)(x^(7)+a^(7))/(x+a)=7, where a<0 then there exists at least one a for which point (a,2) where lies on the line

lim_ (x rarr oo) (sqrt (x ^ (2) + ax + b) -x) =

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(x rarr oo) ((x^(2) + x + 1)/(x + 1)-ax - b)=4 , then :

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x to oo)(sqrt(x^2-x+1)-ax)=b Find the value of 2(a+b) is

If lim_(x to oo) (sqrt(x^(2) -x+1) -ax)=b , then the ordered pair (a, b) is :