Home
Class 12
MATHS
If the straight line lx+my=1 touches th...

If the straight line ` lx+my=1` touches the curve `(ax)^n+(by)^n=1` , then show that,

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line lx+my=1 touches th curve (ax)^(n)+(by)^(n)=1 . Then show that, ((l)/(a))^((n)/(n-1))+((m)/(b))^((n)/(n-1))=1 .

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)=a^(2) , show that a^(2)(l^(2)+m^(2))=n^(2)

If the straight line (x)/(h)+(y)/(k)=1 touches the curve (x/a)^(n)+((y)/(b))^(n)=1 , then show that ((a)/(h))^((n)/(n-1))+((b)/(k))^((n)/(n-1))=1

If the straight line lx+my+n=0 touches the : parabola y^(2)=4ax , prove that am^(2)=nl

If the straight line lx + my=1 is a normal to the parabola y^(2)=4ax , then-

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

Prove that the straight line lx+my+n=0 touches the parabols y^2=4ax , if ln=am^2 .

Find the condition that the straight line lx+my=n touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

The line lx+my+n=0 touches y^(2)=4ax

If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .