Home
Class 12
MATHS
If the curves a x^2+b y^2=1 and c x^2+dy...

If the curves `a x^2+b y^2=1 and c x^2+dy^2=`1 intersect at right angles then show that `1/a-1/b=1/d-1/d.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves ax^(2)+by^(2)=1 and cx^(2)+dy^(2)=1 intersect at right angles then show that (1)/(a)-(1)/(b)=(1)/(c)=(1)/(d)

If two curves ax^2 +by^2=1 and a'x^2+b'y^2=1 intersect orthogonally,then show that 1/a-1/b=1/[a']-1/[b']

Show that the curves ax^2 + by^2 = 1 and a' x^2 + b' y^2 = 1. Intersect at right angles if 1/a - 1/b = 1/a' - 1/b' cdot

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(2)= 16x intersect at right angles, then:

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(2)= 16x intersect at right angles, then:

Show the condition that the curves a x^2+b y^2=1 and Ax^2+By^2=1 should intersect orthogonally is 1/a-1/b=1/A-1/Bdot

If the curvs a x^2 + b y^2 = 1 and a' x^2 + b' y^2 =1 intersect orthogonally, then prove that frac{1}{a} - frac{1}{b} = frac{1}{a'} - frac{1}{b'}

If the curves (x ^(2))/(a ^(2))+ (y^(2))/(4)= 1 and y ^(3)= 16x intersect at right angles, then: