Home
Class 12
MATHS
cos^2 73+cos^2 47-sin^2 43+sin^2107...

`cos^2 73+cos^2 47-sin^2 43+sin^2107`

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (a) 1 (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

sin^2 47^@+sin^2 43^@=

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to

Exact value of cos73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to: