Home
Class 11
MATHS
The value of int(lnpi-ln2)^(lnpi) e^x/(1...

The value of `int_(lnpi-ln2)^(lnpi) e^x/(1-cos((2/3)e^x))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(ln pi-ln2)^(ln pi)(e^(x))/(1-cos(((2)/(3))e^(x)))dx=

int_(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

int _(log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx is equal to

Evaluate : int_0^(ln2)x e^(-x)dx

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

Write a value of int e^(2)x^(2+ln x)dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=