Home
Class 12
MATHS
If x=sin^(- 1)t and y=log(1-t^2) , then...

If `x=sin^(- 1)t and y=log(1-t^2)` , then `((d^2y)/(dx^2))_(t=1/2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sin^(-1)t and y = log (1 - t^2) , then (d^2 y)/(dx^2)|_(t=1//2) is

If x=cos^(-1)t,y=log(1-t^(2))," then "((dy)/(dx))" at "t=(1)/(2) is

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=