Home
Class 11
MATHS
If A={x : x=4n+1, 2<=n<=5,n epsilon N}, ...

If `A={x : x=4n+1, 2<=n<=5,n epsilon N},` then the number of subsets of A is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N} . Then

If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N} . Then

Which of the following sets are equal ? A= {x:x in N,x <4), B= {1,2, 3}, C={1 ,3}, D = {x:x in N, x is odd, x < 5}, E= {1,2, 3, 2}, F = {3,3,1}.

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If ((1+i)/(1-i))^(x)=1 AA n in N is (i) x = 2n+1 (ii) x =4n (iii) x=2n (iv) x=4n+1

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

If n is odd, then Coefficient of x^n in (1+ (x^2)/(2!) +x^4/(4!) + ....oo)^2 =