Home
Class 11
MATHS
Prove that: sin((3"pi")/8-5)cos("pi"/8+5...

Prove that: `sin((3"pi")/8-5)cos("pi"/8+5)+cos((3"pi")/8-5)sin("pi"/8+7)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin((3pi)/8-5)cos( pi/8+5)+cos((3pi)/8-5)sin(pi/8+5)=1

Prove that: sin((3pi)/(8)-5)cos((pi)/(8)+5)+cos((3pi)/(8)-5)sin((pi)/(8)+7)=1

Prove that: sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Prove that sin (10pi)/(3) cos (13pi)/(6) + cos (8pi)/(3) sin (5pi)/(6) = -1

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that cos^8(pi/8)+cos^8((3pi)/8)+cos^8((5pi)/8)+cos^8((7pi)/8)=17/16