Home
Class 12
MATHS
lim(x->0)(secx-1)/(x^2(secx+1)^2)=...

`lim_(x->0)(secx-1)/(x^2(secx+1)^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(secx-1)(secx+1)

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

int((2+secx)secx)/((1+2secx)^2)dx=

int((2+secx)secx)/((1+2secx)^2)dx=

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Evaluate: ("Lim")_(x->0)((log)_(secx/2)(cosx))/((log)_(secx)(cos(x//2))) 1 (b) 16 (c) 4 (d) 2