Home
Class 11
MATHS
The equation sin^2theta=(x^2+y^2)/(2x y)...

The equation `sin^2theta=(x^2+y^2)/(2x y),x , y!=0` is possible if

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

The equation Sin^(2)theta=(x^(2)+y^(2))/(2xy),x,y!=0 is possible if

If x and y be real, show that the equation : sin^2 theta= (x^2+y^2)/(2xy) is possible only when x =y ne 0 .

If x and y be real,then the equation sin^(2)theta=(x^(2)+y^(2))/(2xy) has solution

The equation sec ^2 theta = ( 4xy )/( ( x+y)^2) is possible for x,y, in R only if

Show that sin^(2)theta=(x^(2)+y^(2))/(2xy) is possible for real value of x and y only when x=y!=0

Show that the equation sec^2 theta=(4xy)/(x+y)^2 is only possible when x=y

Show that the equation sec^2 theta=(4xy)/(x+y)^2 is only possible when x=y

Show that the equation sec^(2)theta=(4xy)/((x+y)^(2)) is only possible when x=y