Home
Class 11
MATHS
Show that the following lines are concur...

Show that the following lines are concurrent: `L_1=(a-b)x+(b-c)y+(c-a)=0` `L_2=(b-c)x+(c-a)y+(a-b)=0` `L_3=(c-a)x+(a-b)y+(b-c)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the following lines are concurrent: L_(1)=(a-b)x+(b-c)y+(c-a)=0L_(2)=(b-c)x+(c-a)y+(a-b)=0L_(3)=(c-a)x+(a-b)y+(b-c)=0

L_1=(a-b)x+(b-c)y+(c-a)=0L_2=(b-c)x+(c-a)y+(a-b)=0L_3=(c-a)x+(a-b)y+(b-c)=0 KAMPLE 6 Show that the following lines are concurrent L1 = (a-b) x + (b-c)y + (c-a) = 0 12 = (b-c)x + (c-a) y + (a-b) = 0 L3 = (c-a)x + (a-b) y + (b-c) = 0. ,

Show that the following system is inconsistent. (a-b)x+(b-c)y+(c-a)z=0 (b-c)x+(c-a)y+(a-b)z=0 (c-a)x+(a-b)y+(b-c)z=1

Show that the straight lines (a-b)x+(b-c)y=c-a,(b-c)x+(c-a)y=a-b and (c-a)x+(a-b)y=b-c are concurrent.

Show that the straight lines L_(1)=(b+c)x+ay+1=0,L_(2)=(c+a)x+by+1=0ndL_(3)=(a+b)x+cy+1 are concurrent.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0