Home
Class 12
MATHS
A polynomial function f(x) satisfies the...

A polynomial function f(x) satisfies the condition
`f(x)f((1)/(x))=f(x)+f((1)/(x))` .
If f(10)=1001, then f(20)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Polynomial function f(x) satisfying the condition f(x), f(1/x)=f(x)+f(1/x) . If f(10)=1001, then f(20) is

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) for all x in R,x!=0. If f(3)=-26, then f(4)=

A polynomial function f (x) satisfies f(x) f((1)/(x))=f(x)=f((1)/(x)) . If f(10) =1001, then what is the value of f(20)?

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

The function y=f(x) satisfying the condition f(x+(1)/(x))=x^(3)+(1)/(x^(3)) is

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

A polynomial f(x0 satisfies the condition f(x).f(1/x)=f(x)+f(1/x) and f(10) = 1001, then the value of f(2) =?

Let f(x) be a polynomial function of degree n satisfying the condition f(x)f((1)/(x))=f(x)+f((1)/(x)). Find f(x)