Home
Class 9
MATHS
f(x)=3x^4+17 x^3+9x^2-7x-10 ;g(x)=x+5...

`f(x)=3x^4+17 x^3+9x^2-7x-10 ;g(x)=x+5`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=3x^(4)+17x^(3)+9x^(2)-7x-10;g(x)=x+

Divide P(x)=2x^5-5x^4+7x^3+4x^2-10x+11 by g(x)=x^3+2

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

F(x)=x^(4)-3x^(3)-7x^(2)-10x-25G(x)=x^(4)-4x^(3)+x^(2)-27x-15 Fidn the number of values o x for which f(x)=g(x)=0

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .