Home
Class 12
MATHS
For the primitive integral equation y dx...

For the primitive integral equation `y dx+y^2dy=xdy ; x in R ,y >0,y(1)=1,` then `y(-3)` is (a) 3 (b) 2 (c) 1 (d) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

For the primitive integral equation ydx+y^(2)dy=xdy;x in R,y>0,y(1)=1 then y(-3) is (a)3(b)2(c)1(d)5

If xdy=y(dx+y dy), y gt 0 and y(1)=1 , then y(-3)=

The solution of the primitive integral equation (x^2+y^2)dy=x y dx is y=y(x)dot If y(1)=1 and y(x_0)=e , then x_0 is

If x dy =y (dx+y dy), y(1) =1 and Y(x)gt 0 . Then, y (-3) is epual to (a) 3 (b) 2 (c) 1 (d) 0

The solution of the primitive integral equation (x^2+y^2)dy=x ydx is y=y(x)dot If y(1)=1 and y(x_0)=e , then x_0 is

The solution of the primitive integral equation (x^2+y^2)dy=x ydx is y=y(x)dot If y(1)=1 and y(x_0)=e , then x_0 is

The solution of the primitive integral equation (x^(2)+y^(2))dy=xydx is y=y(x)* If y(1)=1 and y(x_(0))=e, then x_(0) is

If xdy =y(dx+ydy),y(1)=1andy(x)gt0 , then y(-3) is equal to a)3 b)2 c)1 d)0

If xdy=ydx+y^2dy and y(1)=1 , then y(-3) is equal to (A) 1 (B) 5 (C) 4 (D) 3

If xdy=ydx+y^2dy and y(1)=1 , then y(-3) is equal to (A) 1 (B) 5 (C) 4 (D) 3