Home
Class 11
MATHS
sin(B+C-A)+sin(C+A-C)+sin(A+B-C)=4sinAsi...

`sin(B+C-A)+sin(C+A-C)+sin(A+B-C)=4sinAsinBsinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C =180^@ , prove that : sin (B+C-A) + sin(C+ A-B)+ sin(A +B-C)=4sin A sinB sinC .

sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .

If A+B+C=pi , prove that : sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC

sin (B + CA) + sin (C + AC) + sin (A + BC) = 4sin A sin B sin C

If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B) + sin (A + B-C) = 4 sin A sin B sin C (ii) cos(- A+B+C) + cos (A - B + C) + cos (A + B - C) = 1 + 4 cos A cos B cos C (iii) "tan" (B+C - A) + tan (C+A-B) + tan (A + B-C) = tan (B+C - A) tan (C+ A - B) tan (A+B-C)

If cos(A+B+C)=cos A cos B cos C , then (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin 2B sin 2C)=

In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to (A) 2sinAsinBcosC (B) 2sinAcosBsinC (C) 2sinAcosBcosC (D) 2sinAsinBsinC

In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to (A) 2sinAsinBcosC (B) 2sinAcosBsinC (C) 2sinAcosBcosC (D) 2sinAsinBsinC

In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to (A) 2sinAsinBcosC (B) 2sinAcosBsinC (C) 2sinAcosBcosC (D) 2sinAsinBsinC