Home
Class 11
MATHS
The functions f(x)=cos^(-1)(4x^3-3x) and...

The functions `f(x)=cos^(-1)(4x^3-3x)` and `g(x)=3cos^(-1)x` are identical in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

The function f(x)=cos^(-1)x+x increases in the interval

f(x)=tan^(-1)x+tan^(-1)(1/x), g(x)=sin^(-1)x+cos^(-1)x are identical function if

If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1] , then

If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1] , then

f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical functions if

Draw a graph of the function f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1] and find the ara enclosed between the graph of the function and the x-axis varies from 0 to 1.

Draw a graph of the function f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1] and find the ara enclosed between the graph of the function and the x-axis varies from 0 to 1.

Draw a graph of the function f(x) = cos^(-1) (4x^(3)-3x), x in [-1,1] and find the ara enclosed between the graph of the function and the x-axis varies from 0 to 1.