Home
Class 11
MATHS
C0-C1/2+C2/3-...............(-1)^nCn/(n+...

`C_0-C_1/2+C_2/3-...............(-1)^nC_n/(n+1)=1/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

C0-(C1)/(2)+(C2)/(3)-............+(-1)^(n)(Cn)/(n+1)=(1)/(n+1)

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

If ^nC_0/2- ^nC_1/3+^nC_2/4-…….+(-1)^n ^nC_n/(n+2)= 1/(1999x2000) then n= (A) 1998 (B) 1999 (C) 2000 (D) 2001

Give that : C_1+2C_2 x+3C_3 x^2+.....+2n. C_(2n). x^(2n-1)=2n(1+x)^(2n-1) , where C_r=((2n)!)/(r !(2n-r)!) , r=0,1,2, ,2n , then prove that C_1^2-2C_2^2+3C_3^2-..........-2n C_(2n)^2=(-1)^n . nC_n .

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

If 1,w,w^2,.....w^(n-1) are then n, nth root of unity, then (2-w)(2-w^2).....(2-w^(n-1)) equals. (i)2^n (ii).^nC_2.....^nC_n (iii)[.^2nC_0+.^(2n+1)C_1+.^(2n+2)C_2...........+.^(2n+2)C_n)]^(1/2) (iv) 2^n+1

Prove that : C_0 + C_1/2 + C_2/3 + ….. + C_n/(n+1) = (2^(n+1) - 1)/(n+1)

C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n] =

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2