Home
Class 12
MATHS
Q. if logy=sin^-1 x, show that, (1-x^2)(...

Q. if `logy=sin^-1 x`, show that, `(1-x^2)((d^2y)/dx^2)=x(dy/dx)+y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If logy=sin^-1x , show that, (1-x^2)(d^2y)/(dx^2)=xdy/dx+y .

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0

If y=sin^-1x ,then show that (1-x^2)(d^2y)/dx^2-xdy/dx=0

If y=sin(2sin^-1x) show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

If y = sin^-1 x , show that : (1-x^2) d^2y/dx^2- x dy/dx=0

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0