Home
Class 6
MATHS
If y=e^(log(e)(1+e^(log(e)x))) then (dy)...

If `y=e^(log_(e)(1+e^(log_(e)x)))` then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

If y = e^(log x ) , then ( dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

y =[ log_(x) (log _(e) x ) ](log _(e) x ) then (dy)/(dx) equals

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

if y=log_(2)log_(e)xx then (dy)/(dx) is equal to

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If y=log _(e) x+sin x+e^(x) then (dy)/(dx) is: