Home
Class 12
MATHS
If y=e^(msin^(-1)x) prove that (1-x^2)((...

If `y=e^(msin^(-1)x)` prove that `(1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=e^(m)sin^((-1)x), prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-m^(2)y=0

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=e^(msin^-1x)(-1lexle1) , Prove that, (1-x^2)(d^2y)/(dx^2)-xdy/dx=m^2y .

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0