Home
Class 12
MATHS
int(0)^((pi)/(2))(x+sin x)/(1+cos x)dx...

int_(0)^((pi)/(2))(x+sin x)/(1+cos x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(x sin x*cos x)dx

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

Given int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=ln2 then the value of the definite integral int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to

Given int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=log2. Then the value of integral int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to (1)/(2)log2(b) is (pi)/(2)-log2(pi)/(4)-(1)/(2)log2(d)(pi)/(2)+log2

int_(0)^((pi)/(2))(x sin x cos x)/(cos^(4)x+sin^(4)x)dx=

int_(0)^(pi/2)(x sin x)/(1+cos^(2)x)dx

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

int_(0)^((pi)/(2)) ( sin x - cos x )/( 1+ sin x cos x ) dx = ".............."

If |(int_(0)^((pi)/(2))(x cos x+1)e^(sin x)dx)/((int_(0)^(x))/(2)(x sin x-1)e^(cos x)dx)|, then [alpha]=

int_(0)^( pi/2)(sin x)/(1+cos x)dx