Home
Class 11
MATHS
Suppose that a and b are positive real n...

Suppose that a and b are positive real numbers such that `log_(27)a+log_9(b)=7/2` and `log_(27)b+log_9a=2/3`.Then the value of the `ab` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that a and b are positive real numbers such that log_(27) a + log_(9) b = 7/2 " and " log_(27) b + log_(9) a = 2/3 . Find the value of the ab.

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

If log_(a)b=2,log_(b)c=2, and log_(3)c=3+log_(3)a then the value of c/(ab) is..........

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.