Home
Class 11
MATHS
If x,y,z are in GP, then using propertie...

If `x,y,z` are in `GP,` then using properties, show that `|(px+y,x,y),(py+z,y,z),(0,px+y,py+z)|=0,` where `x!=y!=z and p` is any real number.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are in GP, then using properties,det[[px+y,x,ypy+z,y,z0,px+y,py+z]]=0 where x!=y!=z and p is any real number.

Using properties of determinant show that : |(y+z,x,x),(y,z+x,y),(z,z,x+y)|=4xyz

Without expanding show that : |(x-y,y-z,z-x),(y-z,z-x,x-y),(z-x,x-y,y-z)|=0

If x,y,z are in G.P then show that log x,log y,log z are in A.P. (x>0,y>0,z>0) .

If x,y,z are in G.P and a^x=b^y=c^z ,then

If x,y,z are in G.P and a^x=b^y=c^z ,then

If x,y,z are in G.P then show that log_a x+log_a z=2/(log_y a),(x>0,y>0,z>0) .

Show that : (x-y) (x+y) +(y-z)(y+z)+(z-x)(z+x)=0.