Home
Class 12
MATHS
Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx i...

Let `g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot` If `n in I^+,t h e n(g^(prime)(n+1/2))/(g(n+1/2))-(g^(prime)(1/2))/(g(1/2))=` `2(1+1/2+1/3++1/n)` `2(1+1/3+1/5+1/(2n-1))` `n` 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=e^(f(x)) and f(x+1)=x+f(x) AA x in R . If n in I^(+)", then"(g'(n+(1)/(2)))/(g(n+(1)/(2)))-(g'((1)/(2)))/(g((1)/(2)))=

Let g(x)=e^(f(x)) and f(x+1)=x+f(x)AA x in R If n in I^(+), then (g'(n+(1)/(2)))/(g(n+(1)/(2)))-(g'((1)/(2)))/(g((1)/(2)))=2(1+(1)/(2)+(1)/(3)+...+(1)/(n))2(1+(1)/(3)+(1)/(5)+...(1)/(2n-1))n1

let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(prime)(x))/(h(x))

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

An inequation of the form f^((1)/(2)n)(x)

Let g^(prime)(x)>0a n df^(prime)(x)<0AAx in Rdot Then (f(x+1))>g(f(x-1)) f(g(x-1))>f(g(x+1)) g(f(x+1))

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n