Home
Class 11
MATHS
ABCD is a trapezium such that AB and CD ...

ABCD is a trapezium such that AB and CD are parallel and `B C_|_C D` . If `/_A D B""=theta,""B C""=""p""a n d""C D""=""q` , then AB is equal to (1) `(p^2+q^2costheta)/(pcostheta+qsintheta)` (2) `(p^2+q^2)/(p^2costheta+q^2sintheta)` (3) `((p^2+q^2)sintheta)/((pcostheta+qsintheta)^2)` (4) `((p^2+q^2)sintheta)/(pcostheta+qsintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a trapezium such that AB and CD are parallel and BC bot CD . If angleADB = theta, BC = p and CD = q , then AB is equal to (a) ((p^(2)+q^(2))sin theta)/(p cos theta +q sin theta) (b) (p ^(2) + q ^(2)cos theta)/(p cos theta +q sin theta) (c) (p ^(2)+ q^(2))/(p^(2)cos theta +q^(2) sin theta) (d) ((p^(2) +q^(2))sin theta)/((p cos theta + sin theta)^(2))

If tan theta=(q)/(p) then find the value of (p sintheta+qcos theta)/(p cos theta+qsintheta)

ABCD is a trapezium such that AB,DC.are parallel and BC is perpendicular to them. If angleADB=theta, BC= p and CD=q , show that AB= ((p^2+q^2)sintheta)/(pcostheta+qsintheta

ABCD is a trapezium such that A B||C Da n dC B is perpendicular to them. If /_A D B=theta,B C=p ,a n dC D=q , show that A B=((p^2+q^2)sintheta)/(pcostheta+qsintheta)

ABCD is a trapezium such that A B||C Da n dC B is perpendicular to them. If /_A D B=theta,B C=p ,a n dC D=q , show that A B=((p^2+q^2)sintheta)/(pcostheta+qsintheta)

ABCD is a trapezium such that A B||C Da n dC B is perpendicular to them. If /_A D B=theta,B C=p ,a n dC D=q , show that A B=((p^2+q^2)sintheta)/(pcostheta+qsintheta)

ABCD is a trapezium such that A B||C Da n dC B is perpendicular to them. If /_A D B=theta,B C=p ,a n dC D=q , show that A B=((p^2+q^2)sintheta)/(pcostheta+qsintheta)

ABCD is a trapezium such that A B||C Da n dC B is perpendicular to them. If /_A D B=theta,B C=p ,a n dC D=q , show that A B=((p^2+q^2)sintheta)/(pcostheta+qsintheta)

If p sintheta+qcostheta=3&qsintheta-pcostheta=2 , then p^(2)+q^(2)=?

ABCD is a trapezium such that AB|CD and CB is perpendicular to them.If /_ADB=theta,BC=p, and CD=q, show that AB=((p^(2)+q^(2))sin theta)/(p cos theta+q sin theta)