Home
Class 12
MATHS
" 11.If "f(x)={[(sin[x])/([x])," for "[x...

" 11.If "f(x)={[(sin[x])/([x])," for "[x]!=0," is "],[0," ,for "[x]=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x)={{:((sin[x])/([x])","" ""for "[x]ne0),(0","" ""for "[x]=0):} where [x] denotes the greatest integer less than or equal to x. Then find lim_(xto0)f(x).

If f(x) = {((sin(1+[x]))/([x]), for [x] ne 0),(0, for [x] = 0):} , where [x] denotes the greatest integer not exceeding x, then, lim_(x rarr 0^-) f(x) =

If f(x)={{:((sin(1+[x]))/([x]),"for" ,[x] ne 0),(0,"for",[x] =0):} where [x] denotes the greatest integer not exceeding x, then lim_(x to 0^(-))f(x)=

If f(x)={((sin(1+[x]))/([x])"for"[x] ne 0,),(0" for " [x]-0,):} where [x] denotes the greatest integer not exceeding x, then lim_(xrarr0^-)f(x)=

If f(x)={x sin((1)/(x)) for x!=0,0 for x=0. Then

If f(x) = {{:((sin[x])/([x]),[x] != 0),(0,[x] = 0):} , where [x] denotes the greatest integer less than or equal to x, then lim_(x to 0) equals