Home
Class 12
MATHS
If A=int(0)^(pi)cosx/(x+2)^2.dx, then in...

`If A=int_(0)^(pi)cosx/(x+2)^2.dx, then int_(0)^(pi/2)sin(2x)/(x+1).dx ` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

int_(0)^( pi)sin(2*x)dx

If A=int_(0)^( pi)(sin x)/(x^(2))dx, then int_(0)^((pi)/(2))(cos(2x))/(x)dx, is equal to:

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int_(0)^( pi/2)(sin x)*dx

int_(0)^(pi//2) (sin^(2)x)/(sinx+cosx)dx is equal to

int_(0)^(pi/6) sin2x . cosx dx