Home
Class 12
MATHS
int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^...

`int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))=(1)/(2)log|(sqrt(x+(1)/(x)+1-1))/(sqrt(x+(1)/(x)+1+1))|-A+c.`
Then the value of A is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

int (1+x^(2))/(1-x^(2)).(dx)/(sqrt(1+x^(4)))=(1)/(sqrt(2))log|(sqrt(1+x^(4))+xsqrt(2))/(1-x^(2))|+c

int_(-1)^(1) log (x+sqrt(x^(2)+1))dx =

If int (1)/(x sqrt(1 - x^(3))) " dx = a log" | (sqrt(1- x^(3)) - 1)/(sqrt(1 -x^(3) )+ 1) | + b then a =

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?