Home
Class 12
MATHS
If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then...

If `tan^(-1)a+tan^(-1)b+tan^(-1)c=pi` then prove tjhat `a+b+c=abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc

Q.if tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi, then prove that a+b+c=abc.

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If "tan"^(-1)a+"tan"^(-1)b+"tan"^(-1)c=pi , then prove that a+b+c=abc .

If in triangleABC, tan^(-1)(a/(b+c))+ tan^(-1)(c/(a+b)) = pi/4 , then prove that, the triangle is right angled.

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

If tan^(3)A+tan^(3)B+tan^(3)C=3tan A*tan B*tan C then prove that triangle ABC is an equilateral triangle.

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is