Home
Class 11
MATHS
Prove that: sin^2B=sin^2A+sin^2(A-B)-2si...

Prove that: `sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)=sin^(2)+sin^(2)(A-B)-2s in A cos Bs in(A-B)

If A + B + C =180^@ , prove that : sin^2 A- sin^2 B+ sin^2 C=2 sin A cos B sinC .

If A + B + C =pi/2 , prove that : sin^2 A +sin^2 B+sin^2 C= 1-2 sin A sin B sin C .

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

If A+B+C=180^(@), prove that sin2A+sin2B-sin2C=4cos A cos B sin C

Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B-sin^2 C=2 sin A sin B cos C .

Prove that sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)