Home
Class 12
MATHS
If A=[(0,-x),(x,0)] , B=[(0 ,1 ),(1 ,0)...

If `A=[(0,-x),(x,0)]` , `B=[(0 ,1 ),(1 ,0)]` and `x^2=-1` , then show that `(A+B)^2=A^2+B^2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(0,-x),(x,0):}],B=[{:(0,1),(1,0):}]andx^(2)=-1 then show that (A+B)^(2)=A^(2)+B^(2) .

If A=[[0,-xx,0]],B=[[0,11,0]] and x^(2)=-1, then show that (A+B)^(2)=A^(2)+B^(2)

If A=[[0,-xx,0]],B=[[0,11,0]] and x^(2)=-1, then show that (A+B)^(2)=A^(2)+B^(2)

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2) .

If A[(-1,0),(0,1)] and B=[(0,1),(1,0)] , show that (A+B)^2 ne A^2+2AB+B^2 .

If A=[{:(0,1),(1,1):}]andB=[{:(0,-1),(1,0):}] show that (A+B)*(A-B)neA^(2)-B^(2) .

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)