Home
Class 14
MATHS
sin^(2)alpha-2[x sqrt(1-x^(2))-sqrt(x)sq...

sin^(2)alpha-2[x sqrt(1-x^(2))-sqrt(x)sqrt(1-x^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then