Home
Class 12
MATHS
Show that | vec a| vec b+| vec b| vec a ...

Show that `| vec a| vec b+| vec b| vec a` is a perpendicular to `| vec a| vec b-| vec b| vec a ,` for any two non-zero vectors ` vec aa n d vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that | vec a | vec b + | vec b | vec a is perpendicular to | vec a | vec b- | vec b | vec a for any two nonzero vectors vec a and vec b

Show that |vec a|vec b+|vec b|vec a is a perpendicular to |vec a|vec b-|vec b|vec a+|vec a ,for any two non-zero vectors vec a and vec b

Show that |vec a| vec b + |vec b| vec a , is perpendicular to |vec a| vec b - |vec b| vec a , for any two non-zero vectors vec a and vec b .

Show that |vec a|vec b + |vec b|vec a perpendicular to |vec a|vec b - |vec b|vec a , for any two non-zero vectors vec a and vec b .

Show that |vec(a)|vec(b)-|vec(b)|vec(a) , for any two non - zero vectors vec(a) and vec(b) .

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

If vec c is perpendicular to both vec a\ a n d\ vec b , then prove that it is perpendicular to both vec a+ vec b\ a n d\ vec a- vec bdot

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.