Home
Class 12
MATHS
If f(0) = 1, f(2) = 3, f'(2) = 5 and f'(...

If `f(0) = 1, f(2) = 3, f'(2) = 5 and f'(0)` is finite, then `int_0^1 xf''(2x) dx` is equal to (A) zero (B) 1 (C)2 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int_(0)^(1)x. f^''(2x) dx is equal to

If f(x) = f(a - x) , then int_0^(a) xf(x) dx is equal to :

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx