Home
Class 12
MATHS
[y=sin(a sin^(-1)x)],[(1-x^(2))(d^(2)y)/...

[y=sin(a sin^(-1)x)],[(1-x^(2))(d^(2)y)/(dx^(2))=x(dy)/(dy)-az^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

Q.if log y=sin^(-1)x, show that,(1-x^(2))((d^(2)y)/(dx^(2)))=x((dy)/(dx))+y

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If y=(sin^(-1)x)^(2),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=2