Home
Class 11
MATHS
If r1=r2+r3+r prove that the triangle is...

If `r_1=r_2+r_3+r` prove that the triangle is right angled .

Text Solution

Verified by Experts

We have `r_1=r_2+r_3 +r`
`rArr (Delta)/(s-a)-(Delta)/(s)=Delta/(s-b)+Delta/(s-c) rArr (s-s+a)/(s(s-a))=(s-c+s-b)/((s-b)(s-c))`
`rArr (a)/(s(s-a))=(2s-(b+c))/((s-b)(s-c) )" " {as,2s = a+b+c)`
`(a)/(s(s-a))=(a)/((s-b)(s-c))rArr s^2-(b+C)s+bc=s^2-as`
`rArr s(-a+b+c) rArr ((b+c-a)(a+b+c))/2=bc`
`rArr (b+c)^2-(a)^2=2bc " "rArr b^2+C^2+2bc-a^2=2bc`
`rArr b^(2)+c^(2)=a^(2)`
`therefore angle A= 90^(@)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|27 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If in a triangle r_(1)=r_(2)+r_(3)+r ; Prove that triangle is right angled.

If 8R^(2)=a^(2) +b^(2) +c^(2). then prove that the Delta is right angled.

If in a triangle (1-(r_(1))/(r_(2)))(1-(r_(1))/(r_(3)))=2 then the triangle is right angled (b) isosceles equilateral (d) none of these

If r_(1) +r_(2)+ r = r_(3), then show that Delta is right angled.

Prove that a triangle is right angled if (1-(r_(1))/(r_(2)))(1-(r_(1))/(r_(3))) = 2

The sides of a triangle are in geometric progression with common ratio r lt 1. If the triangle is a right-angled triangle, then r is given by

If in a triangle ABC, r_(1)+r_(2)+r_(3)=9r , then the triangle is necessarily