Home
Class 11
MATHS
Prove that (i) C(1)+2C(2)+3C(3)+……+nC(...

Prove that (i) `C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n+1)`
(ii) `C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)`

Text Solution

Verified by Experts

LHS. .`=underset(r=1)overset(n)Sigma r.""^(n)C_(r)==underset(r=1)overset(n)Sigma r.""^(n-1)C_(r-1)`
`underset(r=1)overset(n)Sigmar.n/r.""^(n-1)C_(r-1)`
`n=underset(r=1)overset(n)SigmaC_(r-1)=n[""^(n-1)C_(0)+""^(n=1)C_(1)+.....+""^(n+1)C_(n+1)]`
`=n.2^(n-1)`
Aliter :(using method of differentiation )
Intergrating (A) we get
`=((1+x)^(n) = ""^(n)C_(0)+""^(C)_(2)x^(2)+.....+ ""^(n)C_(n)x^(n)`
Differentitating (A) we get
` n(1+x)^(n+1)=C_(1)+2C_(2)x+3C_(3)X^2+...+n.C_(n)x^(n+1)`
Put X=1
`C_(1)+2C_(2)+3C_(3)+...+n.C_(n)=n.2^(n-1)`
(ii) ` L.H.S = underset(r=0)overset(n)Sigma(C_(r))/(r+1)=(1)/(n+1)underset(r=0)overset(n)Sigma (n+1)/(r+1)""^(n)C_(r)`
`=(1)/(n+1)underset(r=0)overset(n)Sigma^(n+1)C_(r+1)=(1)/(n+1)[""^(n+1)C_(1)+""^(n+1)C_(2)+......+""^(n+1)C_(n+1)]=(1)/(n+1)]=(1)/(n+1)[2^(n+1)-1]`
`((1+x)^(n+1))/(n+1)+C=C_(0)x+(C_(1)x^2)/(2)+(C_(2)x^3)/(3)+.....+(C_(n)x^(n+1))/(n+1)` (where C is a constant )
put =0 ,we get `C=-(1)/(n+1)`
`therefore ((1+x)^(n+1)-1)/(n+1)=C_(0)x+(C_(1)x^2)/(2)+(C_(2)x^3)/(3)+....+(C_(n)x^(n+1))/(n+1)`
Put x=1,we get `C_(0)(C_(1))/(2)+C_(2)/3+....+C_(n)/(n+1)=(2^(n+1)-1)/(n+1)`
Put x=1,we get `C_(0)(C_(1))/(2)+C_(2)/3+....=(1)/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

e_(0)+(C)/(2)+(C_(2))/(3)++(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

C_(0)-(C_(1))/(2)+(C_(2))/(3)-............(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

(C_(0))/(1*2)+(C_(1))/(2*3)+(C_(2))/(3*4)+...+(C_(n))/((n+1)(n+2))=

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

p*C_(0)+p^(2)(C_(1))/(2)+p^(3)(C_(2))/(3)+...+p^(n+1)*(C_(n))/(n+1)=((p+1)^(n+1)-1)/(n+1)

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find numerically greatest term is the expansion of (3-5x)^11 "when " x...

    Text Solution

    |

  2. Given T(3) in the expansion of (1-3x)^6 has maximum numerical value .F...

    Text Solution

    |

  3. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  4. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  5. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  6. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  7. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  8. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  9. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  10. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  11. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  12. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  13. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  14. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  15. If (1+X+x^2)^n = Sigma(r=0)^(2n) a(r) x^r then prove that (a) a(r)=a...

    Text Solution

    |

  16. If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes grea...

    Text Solution

    |

  17. Find the last three digits in 11^(50)

    Text Solution

    |

  18. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  19. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  20. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |