Home
Class 11
MATHS
If (1+x)^n=underset(r=0)overset(n)C(r)x^...

If `(1+x)^n=underset(r=0)overset(n)C_(r)x^r` then prove that `C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2`

Text Solution

Verified by Experts

`(1+x)^(n)=C_0+C_(1)x+C_(2)x^2+C_(2)x^3+......+C_(n)x^n..........(i)`
Differentiating both the sides ,w.r.t x, we get
`n(1+x)^(n-1)=C_(1)+2C_(2)x+3C_(2)x^2+....+n.C_(n)x^(n+1)....(ii)`
also ,we have
`(x+1)^(n)=C_(0)x^n+C_(1)x^(n-1)+C_(2)x^(n-2)+.....+C_(n).....(iii)`
Equating the coefficients of `x^(n-1)` we get
`(C_(1)^(2)+2C_(2)^(2)+3C_(3)^2+.....+C_(n)x^(n-1))(C_(0)x^(n-1)+C_(2)x^(n-2)+......+C_(n))=n(1+x)^(2n-1)`
Equating the coffiecients of `x^(n-1)` we get
`C_(1)^2+2C_2^2+3C_3^2+.....+n.C_n^2=n.""^(2n-1)C_(n-1)=((2n-1)!)/(((n-1)!)^2)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

If (1+x)^(n)=underset(r=0)overset(n)sumC_(r).x^(r) , then (1+(C_(1))/(C_(0)))(1+(C_(2))/(C_(1))) . . . .(1+(C_(n))/(C_(n-1)))=0

Given that C_(1)+2C_(2)x+3C_(3)x^(2)+...+2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1),whereC_(r)=(2n)!/[r!(2n-r)!];r=0,1,2 then prove that C_(1)^(2)-2C_(2)^(2)+3C_(3)^(2)-...-2nC_(2n)^(2)=(-1)^(n)nC_(n).

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+2C_(1)+3C_(2)+.....+(n+1)C_(n)=2^(n-1)(n+2)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), show that (C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+...+(C_(n))/(n+2)=(n*2^(n+1)+1)/((n+1)(n+2))

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find numerically greatest term is the expansion of (3-5x)^11 "when " x...

    Text Solution

    |

  2. Given T(3) in the expansion of (1-3x)^6 has maximum numerical value .F...

    Text Solution

    |

  3. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  4. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  5. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  6. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  7. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  8. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  9. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  10. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  11. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  12. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  13. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  14. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  15. If (1+X+x^2)^n = Sigma(r=0)^(2n) a(r) x^r then prove that (a) a(r)=a...

    Text Solution

    |

  16. If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes grea...

    Text Solution

    |

  17. Find the last three digits in 11^(50)

    Text Solution

    |

  18. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  19. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  20. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |