Home
Class 11
MATHS
Prove that : ""^(n)C(0).""^(2n)C(n)-""...

Prove that `: ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n`

Text Solution

Verified by Experts

L.H.S = coefficent of `x^n "in" [""^(n)C_(0)(1+x)^(20)-""^(n)C_(1)(1+x)^(2n-2)....]`
= cofficient of `x^(n)[(1+x)^2-1]^n`
Coffficient of `x^n "in" x^n(X+2)^n=2^n`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Prove that (""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))^(2)-…+(""^(2n)C_(2n))^(2)=(-1)^(n)*""^(2n)C_(n) .

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find numerically greatest term is the expansion of (3-5x)^11 "when " x...

    Text Solution

    |

  2. Given T(3) in the expansion of (1-3x)^6 has maximum numerical value .F...

    Text Solution

    |

  3. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  4. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  5. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  6. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  7. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  8. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  9. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  10. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  11. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  12. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  13. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  14. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  15. If (1+X+x^2)^n = Sigma(r=0)^(2n) a(r) x^r then prove that (a) a(r)=a...

    Text Solution

    |

  16. If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes grea...

    Text Solution

    |

  17. Find the last three digits in 11^(50)

    Text Solution

    |

  18. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  19. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  20. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |