Home
Class 11
MATHS
If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n t...

If `(1+x)^n=C_(0)C_1c+C_(2)x^2+…..+C_(n)x^n` then show that the sum of the products of the `C_(i)` taken two at a time represented by :`Sigma_(0 le I lt) Sigma_( j le n) C_(i)C_(j)` "is equal to " 2^(2n-1)-(2n!)/(2.n! n !)`

Text Solution

Verified by Experts

Since `(c_0+C_1+C_2 +……+C_(n-1)+C_(n))^2`
`=C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......C_(n-1)^(2)+C_(n)^2+2(C_(0)C_(1)+C_(0)C_(2)+C_(0)C_(3)+....+C_(0)C_(n)+C_(1)C_(2)+C_1C_3+...C_1C_n+C_2C_3+C_2C_4+...+C_2C_n+...+C_(n-1)C_n)`
`(2^)2=""^(2n)C_(n)+2 underset(0 le i lt j le n )(SigmaSigma) C_(i)C_(j)`
Hence `underset(0 le i lt j le n )(SigmaSigma) C_(i)C_(j)=2""^(2n-1)-(2n!)/(2.n!n!)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) +.................+ C_(n)x^(n) then show that the sum of the products of the C_(i)'s taken two at a time represents by : {:(" "sum" "sum" " c_(i)c_(j)),(0 le i lt j le n ):} is equal to 2^(2n-1)-(2n!)/(2.n!.n!)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+......+C_(n)x^(n) then show that the sum of the products of the coefficients taken two at a time,represented by sum sum_(0<=i

sum_(0<=i

sum_(0<=i<=j<=n)sum^(n)C_(i) is equal to

sum_(0<=i

sum_(i=0)^(n)sum_(j=0)^(m)*^(n)C_(i)*C_(j) is equal to

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following sumsum_(0 le i lt j le n)C_(i)

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find numerically greatest term is the expansion of (3-5x)^11 "when " x...

    Text Solution

    |

  2. Given T(3) in the expansion of (1-3x)^6 has maximum numerical value .F...

    Text Solution

    |

  3. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  4. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  5. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  6. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  7. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  8. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  9. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  10. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  11. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  12. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  13. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  14. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  15. If (1+X+x^2)^n = Sigma(r=0)^(2n) a(r) x^r then prove that (a) a(r)=a...

    Text Solution

    |

  16. If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes grea...

    Text Solution

    |

  17. Find the last three digits in 11^(50)

    Text Solution

    |

  18. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  19. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  20. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |