Home
Class 11
MATHS
If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N...

If `(6sqrt(6)+14 )^(2n+1)` = [N]+F and F=N -[N] , where [.] denotes greatest interger function then NF is equal to

A

`20^(2n+1)`

B

an even interger

C

odd interger

D

`40^(2n+1)`

Text Solution

Verified by Experts

Since `(6sqrt(6) +14)^(2n+1)= [N]+F`
Let us same that f `=(6sqrt(6)14)^(2n+1)` : where of ` 0 le f lt 1`
Now ,[N] +F-f`=6(sqrt(6)-14)^(2n+1)-(6 sqrt(6)-14)^(2n+1)`
`=2[""^(2n+1)C_(1)(6sqrt(6))^2n (14)+^(2n+1)C_(3)(6sqrt(6))^(2n-2)(14)^(3)+..]`
`rArr [N] +F =` even interger
Now ` j lt F lt 1 and 0 lt f lt 1`
So -1 lt F- f lt 1 and F -f is an integer so it can only be zero
Thus NF=`(6sqrt(6)+14)^(2n+1)(6sqrt(6)-14)^(2n +1)=20^(2n+1)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|29 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If R = (sqrt(2) + 1)^(2n+1) and f = R - [R] , where [ ] denote the greatest integer function, then [R] equal

Let R=(2+sqrt(3))^(2n) and f=R-[R] where [ denotes the greatest integer function,then R(1-f) is equal to

Let R = (sqrt2+1)^(2n+1),ninN and f= R- [R], where [] denote the greatest integer function, Rf is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest integer function, then the value of p(1-f) is equal to a.1 b. 2 c. 2^n d. 2^(2n)

Let R=(5sqrt(5)+11)^(2n+1) and f=R-[R] where [1 denotes the greatest integer function,prove that Rf=4^(n+1)

show that [(sqrt(3) +1)^(2n)] + 1 is divisible by 2^(n+1) AA n in N , where [.] denote the greatest integer function .

Let S_(n)=sum_(r+1)^(n)r!(n>6), then S_(n)-7[(S_(n))/(7)] (where [.] denotes the greatest integer function) is equal to (A) [(n)/(7)](B)n!-7[(n-1)/(7)](C)5(D)3

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find numerically greatest term is the expansion of (3-5x)^11 "when " x...

    Text Solution

    |

  2. Given T(3) in the expansion of (1-3x)^6 has maximum numerical value .F...

    Text Solution

    |

  3. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  4. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  5. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n+1) (ii) C(0)+(C(1)...

    Text Solution

    |

  6. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  7. Prove that :C(0)-3C(1)+5C(2)- ………..(-1)^n(2n+1)C(n)=0

    Text Solution

    |

  8. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  9. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  10. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  11. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  12. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  13. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  14. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  15. If (1+X+x^2)^n = Sigma(r=0)^(2n) a(r) x^r then prove that (a) a(r)=a...

    Text Solution

    |

  16. If (6sqrt(6)+14 )^(2n+1) = [N]+F and F=N -[N] , where [.] denotes grea...

    Text Solution

    |

  17. Find the last three digits in 11^(50)

    Text Solution

    |

  18. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  19. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  20. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |